Лаборатория Материалы и технологии ЖК-устройств

Дата создания - 1999 г.

Количество сотрудников – 6

кандидатов наук - 2, магистров -3, аспирантов – 1 

Оказывает научное сопровождение производства средства отображения информации в Республике Беларусь. Занимается разработкой анизотропных материалов, новых технологий на основе анизотропных материалов, а так же разработкой устройств на основе технологий жидких кристаллов.

Created – 1999
Researchers – 6 (PhD - 2, MPhil – 3, PhD students – 1)
The laboratory performs scientific supervision of information display production in the Republic of Belarus. R&D of anisotropic materials, new technologies based on anisotropic materials, as well as R&D of devices based on LCD technologie

 

Created – 1999Researchers – 6 (PhD - 2, MPhil – 3, PhD students – 1)

The laboratory performs scientific supervision of information display production in the Republic of Belarus. R&D of anisotropic materials, new technologies based on anisotropic materials, as well as R&D of devices based on LCD technologies.

  • Исследования
  • Разработки
  • Изобретения
  • Публикации

Приоритетные направления исследований

- Анизотропные материалы и жидкокристаллические технологии для фотоники и электрооптики

Исследование материалов, разработка технологий и структур, создание устройств: ориентирующие материалы, фотоориентанты, ЖК линзы, ЖК призмы и др., хиральные добавки, фазовые ретардеры, вортекс ретардеры, пленочные оптические системы, характеризация ЖК смесей (Δn(λ), T(λ), Δε, Vth, τon, τoff), поляризационные UV, VIS, NIR, IR спектральные измерения, разработка методов измерения.

R&D материалов для ЖКУ

R&D ЖК устройств: разработка, исследование, оптимизация и прототипирование

 

Priority Research Directions

- Anisotropic materials and Liquid Crystal technologies for Photonics and Electro-optics

Materials investigation, technology and structure development, prototype fabrication: alignment materials, photoalignment, LC lenses, LC prisms and etc., chiral dopants, phase retarders, vortex retarders, film optical systems, LC mixtures characterization (Δn(λ), T(λ), Δε, Vth, τon, τoff); polarized UV, VIS, NIR, IR spectral measurements; development of measurement methods

R&D of LCD materials

R&D of LCD devices: development, investigation, optimization and prototyping

 

 

 

Разработаны оригинальные методы измерений 

Измерение объемной анизотропии поглощения двуосных поглощающих пленочных материалов – αx, αy, αz:

A. Murauski, A. Muravsky, V. Agabekov, Investigation of volume absorption anisotropy of complex anisotropic structures, Mol.Cryst.Liq.Cryst. 559, pp.179-185 (2012)

Измерение азимутальной (Wφ) и полярной (Wθ) энергий сцепления:

Ан.А. Муравский, Ал.А. Муравский, В.Е. Агабеков,  Установка для одновременного измерения азимутальной и полярной энергии сцепления жидкого кристалла в одной ячейке в автоматическом режиме, Вестник МГОУ Сер. «Физика- Математика» №1, с.51- 56 (2013)

Измерение дисперсии показателей преломления двуосных пленочных материалов – nx(λ), ny(λ), nz(λ):  

В.С. Безрученко, Ан.А. Муравский, Ал.А. Муравский, Определение дисперсии показателей преломления двулучепреломляющих полипропиленовых пленок, Журн.Прикл.Спектр.81, с. 457-463 (2014)

Оптическое интерференционное измерение толщин пленок в диапазоне 0,01–20,00 мкм с точностью ±10 нм:  

Ан.А. Муравский, Измерение профиля поверхности с нанометровой точностью, Комплексный семинар «Современные технологии и методы анализа в сфере микро- и наноэлектроники. Анализ поверхности и исследование структуры и химческого состава» ОАО «Интеграл» 13 июня 2017, Минск, Беларусь (2017)

Концепция лаборатории осуществление полного цикла исследований «материал-структура-устройство» для нужд современной промышленности, включая:

1)      молекулярный дизайн и концепция нового функционального материала, квантово-химический анализ, разработка методики получения, синтез аналитических образцов материала, характеризация свойств материала, наработка опытной партии материала;

2)      расчет структуры устройства на основе нового материала, создание элементов структуры устройств и характеризация структуры устройства, создание технологии изготовления устройств;

3)      разработка и изготовление действующего прототипа устройства, измерение параметров устройства, доказательство технологического превосходства устройства;

4)      внедрение в производство на действующем оборудовании заказчика, анализ технологических проблем, анализ брака, поиск путей устранения, формулирование технического задания на новое оборудование;

5)      помощь в подборе оборудования, модернизации производственных мощностей, разработка и изготовлении нового оборудования на основе ЖК технологий.

Возможные формы сотрудничества: хозяйственный договор типа НИР, НИОКР, НИОКТР, поставочный договор и др.

Мероприятия по подготовке договора: взаимное соглашение о неразглашении для защиты конфиденциальной информации, выезд специалистов к заказчику для обсуждения техзадания, телефонная/скайп конференция и др.

Наши проекты:

  • 2018 Вортекс твистеры, Q-twist: пространственные транспаранты с 2D распределением угла вращения плоскости поляризации, генерируют орбитальный угловой момент Q в пучке прошедшего линейно-поляризованного излучения
  • 2017 Новый механизм фотоориентации жидких кристаллов: обнаружен новый, ранее не известный, механизм фотоориентации жидких кристаллов на основе фотооиндуцированных дырочных диполей в пленке азокрасителя; обеспечивает азимутальную энергию сцепления до 6х10-4 Дж/м2 при экспозиционной дозе менее 0,5 Дж/см2
  • 2016 Вортекс ретардеры, Q-plate: текстурированые фазовые ретардеры λ/4 по технологии фотоориентации, генерируют орбитальный угловой момент Q в пучке прошедшего линейно-поляризованного излучения, улучшено время их изготовления в 8 раз
  • 2015 Фотоориентант жидких кристаллов: новый фоториентант жидких кристаллов на основе концепции обратимых межмолекулярных связей – азокраситель AtA-2, высокая фоточувствительность 0,8-1,2 Дж/см2, не образует кристаллогидраты с водой, устойчив к влажности воздуха, переориентируется в плоскости слоя, азимутальная энергия сцепления 2х10-4 Дж/м2
  • 2014 Технология создания управляемых жидкокристаллических линз: полностью совместима с ЖК технологией, возможные формы ЖК линз цилиндрическая / параболическая (сферическая), низковольтное управление 5В, толщина менее 2 мм, диаметр линзы 0,1 - 2 мм, переключаемое фокусное расстояние в диапазоне менее 40 – ∞ см
  • 2013 Четвертьволновые фазовые пленки: широкий спектральный диапазон 500-620 нм по уровню фазовой задержки λ/4±10нм, однородность по площади лучше 5%, на основе крупнотоннажного отечественного сырья, применяются для изготовления ‘ахроматические’ право- и лево-циркулярные поляризаторов, поляризационных 3D и Dual-Play очков (технология RealD)
  • 2011-2012 Фотоотверждаемый ориентант жидких кристаллов: улучшение яркости ЖК устройств на 1-2%, снижение в 10 раз энергозатрат на операцию по созданию ориентирующего слоя, снижение вероятности технологического брака
  • 2011 Утилизация отходов отработанной суспензии : разработка инновационного метода обработки отходов в процессе струнной резки монокристаллов кремния позволила избежать остановки производства предприятия заказчика и штрафных санкций со стороны экологических служб
  • 2010 Характеризация органических люминесцентных полупроводниковых материалов : создание комплекса оборудования и программного обеспечения для нового уровня измерений позволило увеличить число заказчиков и объемы выпуска материалов, а также более чем в 2 раза увеличить интенсивность свечения красных люминецентных красок на их основе

Our Original State-Of-Art Measurement Methods

Volume absorption anisotropy measurement of biaxial absorbing film materials – αx, αy, αz:

A. Murauski, A. Muravsky, V. Agabekov, Investigation of volume absorption anisotropy of complex anisotropic structures, Mol. Cryst. Liq. Cryst. 559, pp.179-185 (2012)

Automatic anchoring energy measurement:

A.A. Murauski, A.A. Muravsky, V.E. Agabekov, Setup for simultaneous measurement of azimuthal and polar anchoring energy of liquid crystal within single cell in automatic regime, Vestnik MSRU Ser. «Physics – Mathematics» 1, pp.51- 56 (2013)

Refractive indices dispersions measurement of biaxial film materials – nx(λ), ny(λ), nz(λ):

V.S. Bezruchenko, A.A. Murauski, A.A. Muravsky, Measurement of the refractive indices dispersions of birefringent polypropylene films, J. Appl. Spectr.81, pp. 457-463 (2014) В.С. Безрученко, Ан.А.

Concept of Laboratory performing the full cycle of R&D ‘material-structure-device’ to meet the contemporary industry needs, including:

1)      molecular design and concept of novel functional material, quantum-chemical analysis, development of obtainment methods, analytical material samples synthesis, characterization of material properties

2)      computation of device structure based on new material, creation of device structure elements and characterization of the device structure, development of device fabrication technology

3)      work out of experimental batch of material and operating device prototype fabrication, measurement of device paramenters, device technological superiority proof

4)      industrial implementation on present customer’s equipment, technological problems analysis, defects analysis, failures’ solution search, formulation of technical specification for new equipment

5)      assistance in equipment selection, modernization of production capacities, design and fabrication of new equipment based on LC technologies

Possible cooperation models: research agreement, research & development agreement, joint development agreement, material evaluation agreement, material supply agreement and other.

Agreement arrangements: confidential information is protected by mutual non-disclosure agreement; visit of specialist on customer’s site for discussion of technical specification of agreement, phone/skype conference and other.

Our projects:

  • 2018 Vortex twisters, Q-twist: spatial transparent with 2D distribution of the twist angle of the polarization plane, generate Orbital Angular Momentum (OAM) Q of the through-passing linearly polarized light beam
  • 2017 New mechanism of Liquid Crystals photoalignment: we have discovered new mechanism of liquid crystals photoalignment unknown before based on photoinduced hole dipoles in the azodye film that provides azimuthal anchoring energy up to 6х10-4 J/m2 at exposure dose below 0.5 J/cm2
  • 2016 Vortex retarders, Q-plate: patterned phase retarders λ/4 by photoalignment technology, generate Orbital Angular Momentum (OAM) Q of the through-passing linearly polarized light beam, improved Q-plate recording time by 8 times
  • 2015 Liquid Crtystals photoalignment material: new liquid crystal photoalignment material based on the concept of reversible intermolecular bonds – azodye AtA-2, high photosensitivity 0,8-1,2 J/cm2, no hydrate crystal formation with water, resistive to air humidity, reorientation in the film plane, azimuthal anchoring energy 2х10-4 J/m2
  • 2014 Technology of tunable Liquid Crystal lens fabrication: fully compatible with LCD technologies, available shapes of LC lens cylindrical / parabolic (spherical), low control voltage 5 V, thickness below 2 mm, lens diameter 0.1 - 2 mm, tunable focal length in the range below 40 – ∞ cm
  • 2013 Half-wave phase retardation film: wide spectral range 500-620 nm of phase retardation level λ/4±10 nm, area uniformity better 5%, based on large tonnage local resource, applied for fabrication of ‘achromatic’ right- and left- circular polarizers, polarization 3D and Dual-Play glasses (RealD technology)
  • 2011-2012 Photo-hardened liquid crystal alignment material : 1-2% improvement of brightness of LC device, 10 times energy consumption decrease of alignment layer process, decrease of technologic failure probability
  • 2011 Utilization of suspension wastes : development of the innovative treatment method of wastes, arising from mono-crystalline silicon string cutting process, allowed to avoid the stop of customer production and escape from Environmental Services penalties
  • 2010 Characterization of organic luminescent semiconductor materials : development of the set of equipment & software for the new level of measurements allowed to increase the number of customers and raise volumes of produced materials, as well as 2 times increase of of red luminescent dye light emitting intensity
Видео 1

     

    Наши патенты:
    1. Патент BY №15591 1,4-Бис[1-(4-гидрокси-3-карбоксилат)фенилазо]бензол и его металлсодержащие производные в качестве пленочного материала для фотоориентации жидких кристаллов
    2. Патент BY №14753 Способ формирования текстурированной ориентации жидких кристаллов
    3. Патент BY № 17225 4,4’-бис[1-(4-гидрокси-3-карбокси-6-метил)фенилазо]дифенил и его металлпроизводные соли как фоториентирующий тонкопленочный материал
    4. Патент BY №18774 Ахроматическая поляризационно-независимая рассеивающая микроструктурированная сетчатая пленка на основе нитроцеллюлозы
    5. Патент BY №19879 Фоточувствительный материал для однородной и многодоменной ориентации жидких кристаллов 
    6. Патентная заявка BY №а20131038 Хиральная жидкокристаллическая композиция
    7. Patent KR 2016053264 Compound for alignment layer, Alignment layer, Method of fabricating alignment layer and Liquid crystal display device including alignment layer
    8. Патент BY №21524 Материал для фотоориентации жидких кристаллов
    9. US Patent US 9476569 B2 Apparatus light pen and its use
    10. Патент BY №20861 Световая ручка
    11. US Patent US9513510 B1 Alignment material for liquid crystal lens and liquid crystal lens system

    1. Патент BY №15591 1,4-Бис[1-(4-гидрокси-3-карбоксилат)фенилазо]бензол и его металлсодержащие производные в качестве пленочного материала для фотоориентации жидких кристаллов

    2. Патент BY №14753 Способ формирования текстурированной ориентации жидких кристаллов

    3. Патент BY № 17225 4,4’-бис[1-(4-гидрокси-3-карбокси-6-метил)фенилазо]дифенил и его металлпроизводные соли как фоториентирующий тонкопленочный материал

    4. Патент BY №18774 Ахроматическая поляризационно-независимая рассеивающая микроструктурированная сетчатая пленка на основе нитроцеллюлозы

    5. Патент BY №19879 Фоточувствительный материал для однородной и многодоменной ориентации жидких кристаллов 

    6. Патентная заявка BY №а20131038 Хиральная жидкокристаллическая композиция

    7. Patent KR 2016053264 Compound for alignment layer, Alignment layer, Method of fabricating alignment layer and Liquid crystal display device including alignment layer

    8. Патент BY №21524 Материал для фотоориентации жидких кристаллов

    9. US Patent US 9476569 B2 Apparatus light pen and its use

    10. Патент BY №20861 Световая ручка11. US Patent US9513510 B1 Alignment material for liquid crystal lens and liquid crystal lens system

     

    Our patents:

    1. BY Patent # 15591 1,4-Bis[1-(4-hydroxy-3-carboxylate)phenylazo]benzene and its metal-containing derivatives as film material for photoalignment of liquid crystals

    2. BY Patent #14753 Method of formation of patterned liquid crystal alignment

    3. BY Patent #17225 4,4’-bis[1-(4-hydroxy-3-carboxy-6-methyl)phenylazo]biphenyl and its metal derivative salts as photoalignment thin film material

    4. BY Patent #18774 Achromatic Polarization Independent Scattering Fishnet Film based on Nitrocellulose

    5. BY Patent #19879 Photosensitive material for uniform and multidomain alignment of liquid crystals

    6. BY Patent application, BY #а20131038 Chiral liquid crystal composition

    7. Patent KR 2016053264 Compound for alignment layer, Alignment layer, Method of fabricating alignment layer and Liquid crystal display device including alignment layer

    8. BY Patent #21524 Material for photoalignment of liquid crystals

    9. US Patent US 9476569 B2 Apparatus light pen and its use

    10. BY Patent #20861 Light pen

    11. US Patent US9513510 B1 Alignment material for liquid crystal lens and liquid crystal lens system

     

    Our awards:

    2017 

    2014 

    2013   

    2012     

    2010 

    2009 

    1. V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, U. Mahilny, Alignment Materials with controllable anchoring energy, J. Soc. Inf. Displ., 10.1002/jsid.675 (2018)

    2. I.I. Rushnova, E.A. Melnikova, A.L. Tolstik, A.A. Muravsky, Electrically Switchable Photonic Liquid Crystal Devices for Routing of a Polarized Light Wave, Optics Communications 413, pp.179-183 (2018)

    3. M.P. Bey, A.P. Yuvchenko, A.A. Muravsky, A.A. Murauski, New amides and imidoamides of maleopimaric acid as chiral dopants for nematic liquid crystal compounds, Rus. J. Gen. Chem. 88/2, pp. 273-278 (2018)

    4. Bezruchenko V.S., Mahilny U.V., Stankevich A.I., Muravsky A.A., Murauski A.A., Kukhta I.N., Centrosymmetric distributions intensity of light formation for exposure of photosensitive alignment layers of LC lenses, J. BSU. Physics 3, 12-19 (2017) 

    5. V.S. Bezruchenko, A.A. Muravsky, A.A. Murauski, A.I. Stankevich, U.V. Mahilny, Tunable Liquid Crystal Lens based on Pretilt Angle Gradient Alignment, Mol. Cryst. Liq. Cryst., 626, pp.222-228 (2016)

    6. V.S. Bezruchenko, A.A. Muravsky, A.A. Murauski, A.I. Stankevich, U.V. Mahilny, Azimuthal Anchoring Energy increase of Gradient Copolymer by Additives of Planar Alignment Polymer, Liq. Cryst. & their Appl., Russian Journal, 16, pp. 38-41 (2016)

    7. V.S. Mikulich, An.A. Murauski, Al.A. Muravsky and V.E. Agabekov, Influence of Methyl Substituents on Azo-Dye Photoalignment in Thin Films, J. Appl. Spectr. 83, pp.115-120 (2016)

    8. V.S. Mikulich, An.A. Murauski, Al.A. Muravsky and V.E. Agabekov, Effect of Temperature on the Photoalignment of Azo Dyes in Thin Films, Rus. J. Phys. Chem. A 90, pp. 675–682 (2016).

    9. E.A. Melnikova, A.L. Tolstik, I.I. Rushnova, O.S. Kabanova, A.A. Muravsky, Electrically controlled spatial-polarization switch based on patterned photoalignment of nematic liquid crystals, Appl.Opt. 55, pp. 6491-6495 (2016).

    10. A. Stankevich, V. Bezruchenko, A. Muravsky, A. Murauski, V. Agabekov, Anisotropic Thin Films Formation Rate оn PEDOT:PSS Layer with High Azimuthal Anchoring, J. Soc. Inf. Displ. 24, pp. 628-632 (2016)

    11. A.A. Komar, A.L. Tolstik, E.A. Melnikova, and A.A. Muravsky, Optical switch based on the electrically controlled liquid crystal interface, Appl. Opt. 54, pp. 5130-5135 (2015)

    12. V.S. Mikulich, Al.A. Muravsky, An.A. Murauski, and V.E. Agabekov, Effect of cis/trans-Isomerisation on Photoalignment of Azo Dyes, Rus. J. Gen. Chem. 85, pp.407-412 (2015)

    13. Gurumurthy Hegde, A.A. Muravsky, A.A. Murauski, I.N. Kukhta, A.V. Adhikari, L. Komitov, Photo tuning of thiophene-2, 5-dicarbo hydrazide derivatives for their photoalignment ability-Molecular modelling studies, RSC Adv. 5, 79800 (2015)

    14. U.V. Mahilny, A.I. Stankevich, A.V. Trofimova, A.A. Muravsky, A.A. Murauski, Photosensitive Polymers for Liquid Crystal Alignment, Phys.Procedia 73, 121-125 (2015)

    15. Belyaev, V. V., Chausov, D. N., Kurilov, A. D., Rybakov, D. O., Solomatin, A. S., Murauski, A.A., Muravsky A.A., Chigrinov V.G., Fan, F, Dielectric properties of liquid crystals for display and sensor applications, J. Soc. Inf. Displ. 23, pp. 403-409 (2015)

    16. V.S. Mikulich, A.A. Muravsky, A.A. Murauski, I.N. Kukhta, V.E. Agabekov, Photoalignment dynamics of azo dyes series with different coordination metals, J. Soc. Inf. Displ. (2014)

    17. В.С. Безрученко, Ан.А. Муравский, Ал.А. Муравский, Определение дисперсии показателей преломления двулучепреломляющих полипропиленовых пленок, Журн.Прикл.Спектр.81, с. 457-463 (2014)

    18. V. Mikulich, A. Murauski,  A. Muravsky, V. Agabekov, V. Bezruchenko, Waterproof material for liquid crystals photoalignment based on azo dyes, J. Soc. Inf. Displ.22/4, pp. 199-203 (2014)

    19. Ан.А. Муравский, Ал.А. Муравский, В.Е. Агабеков, Установка для одновременного измерения азимутальной и полярной энергии сцепления жидкого кристалла в одной ячейке в автоматическом режиме, Вестник МГОУ Сер. «Физика- Математика» 1, с.51- 56 (2013)

    20. A. Murauski, A. Muravsky, V. Agabekov, Investigation of volume absorption anisotropy of complex anisotropic structures, Mol.Cryst.Liq.Cryst. 559, pp.179-185 (2012)

    21. Al.A. Muravsky, An.A. Murauski, V.E. Agabekov, O.O. Chuvasheva and N.A. Ivanova, Achromatic circular polarizer in the 482–535 nm range based on polypropylene films, J. Appl. Spectr. 79, #5, pp. 820-825 (2012)

    22. A.A. Muravsky, V.E. Agabekov, A.L. Tolstik, U.V. Mahilny, Photoaligned liquid crystal lens with single low voltage electrode, J. Semicond. Phys., Quant. Electr. and Optoelectr. 13, pp. 154-157 (2010)

     

    Our publications:

    1. V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, U. Mahilny, Alignment Materials with controllable anchoring energy, J. Soc. Inf. Displ., 10.1002/jsid.675 (2018)

    2. I.I. Rushnova, E.A. Melnikova, A.L. Tolstik, A.A. Muravsky, Electrically Switchable Photonic Liquid Crystal Devices for Routing of a Polarized Light Wave, Optics Communications 413, pp.179-183 (2018)

    3. M.P. Bey, A.P. Yuvchenko, A.A. Muravsky, A.A. Murauski, New amides and imidoamides of maleopimaric acid as chiral dopants for nematic liquid crystal compounds, Rus. J. Gen. Chem. 88/2, pp. 273-278 (2018)

    4. Bezruchenko V.S., Mahilny U.V., Stankevich A.I., Muravsky A.A., Murauski A.A., Kukhta I.N., Centrosymmetric distributions intensity of light formation for exposure of photosensitive alignment layers of LC lenses, J. BSU. Physics 3, 12-19 (2017) 

    5. V.S. Bezruchenko, A.A. Muravsky, A.A. Murauski, A.I. Stankevich, U.V. Mahilny, Tunable Liquid Crystal Lens based on Pretilt Angle Gradient Alignment, Mol. Cryst. Liq. Cryst., 626, pp.222-228 (2016)

    6. V.S. Bezruchenko, A.A. Muravsky, A.A. Murauski, A.I. Stankevich, U.V. Mahilny, Azimuthal Anchoring Energy increase of Gradient Copolymer by Additives of Planar Alignment Polymer, Liq. Cryst. & their Appl., Russian Journal, 16, pp. 38-41 (2016)

    7. V.S. Mikulich, An.A. Murauski, Al.A. Muravsky and V.E. Agabekov, Influence of Methyl Substituents on Azo-Dye Photoalignment in Thin Films, J. Appl. Spectr. 83, pp.115-120 (2016)

    8. V.S. Mikulich, An.A. Murauski, Al.A. Muravsky and V.E. Agabekov, Effect of Temperature on the Photoalignment of Azo Dyes in Thin Films, Rus. J. Phys. Chem. A 90, pp. 675–682 (2016).

    9. E.A. Melnikova, A.L. Tolstik, I.I. Rushnova, O.S. Kabanova, A.A. Muravsky, Electrically controlled spatial-polarization switch based on patterned photoalignment of nematic liquid crystals, Appl.Opt. 55, pp. 6491-6495 (2016).

    10. A. Stankevich, V. Bezruchenko, A. Muravsky, A. Murauski, V. Agabekov, Anisotropic Thin Films Formation Rate оn PEDOT:PSS Layer with High Azimuthal Anchoring, J. Soc. Inf. Displ. 24, pp. 628-632 (2016)

    11. A.A. Komar, A.L. Tolstik, E.A. Melnikova, and A.A. Muravsky, Optical switch based on the electrically controlled liquid crystal interface, Appl. Opt. 54, pp. 5130-5135 (2015)

    12. V.S. Mikulich, Al.A. Muravsky, An.A. Murauski, and V.E. Agabekov, Effect of cis/trans-Isomerisation on Photoalignment of Azo Dyes, Rus. J. Gen. Chem. 85, pp.407-412 (2015)

    13. Gurumurthy Hegde, A.A. Muravsky, A.A. Murauski, I.N. Kukhta, A.V. Adhikari, L. Komitov, Photo tuning of thiophene-2, 5-dicarbo hydrazide derivatives for their photoalignment ability-Molecular modelling studies, RSC Adv. 5, 79800 (2015)

    14. U.V. Mahilny, A.I. Stankevich, A.V. Trofimova, A.A. Muravsky, A.A. Murauski, Photosensitive Polymers for Liquid Crystal Alignment, Phys.Procedia 73, 121-125 (2015)

    15. Belyaev, V. V., Chausov, D. N., Kurilov, A. D., Rybakov, D. O., Solomatin, A. S., Murauski, A.A., Muravsky A.A., Chigrinov V.G., Fan, F, Dielectric properties of liquid crystals for display and sensor applications, J. Soc. Inf. Displ. 23, pp. 403-409 (2015)

    16. V.S. Mikulich, A.A. Muravsky, A.A. Murauski, I.N. Kukhta, V.E. Agabekov, Photoalignment dynamics of azo dyes series with different coordination metals, J. Soc. Inf. Displ. (2014)

    17. V.S. Bezruchenko, A.A. Murauski, A.A. Muravsky, Measurement of the refractive indices dispersions of birefringent polypropylene films, J. Appl. Spectr. 81, pp. 457-463 (2014)

    18. V. Mikulich, A. Murauski,  A. Muravsky, V. Agabekov, V. Bezruchenko, Waterproof material for liquid crystals photoalignment based on azo dyes, J. Soc. Inf. Displ.22/4, pp. 199-203 (2014)

    19. A.A. Murauski, A.A. Muravsky, V.E. Agabekov, Setup for simultaneous measurement of azimuthal and polar anchoring energy of liquid crystal within single cell in automatic regime, Vestnik MSRU Ser. «Physics – Mathematics» 1, pp.51- 56 (2013)

    20. A. Murauski, A. Muravsky, V. Agabekov, Investigation of volume absorption anisotropy of complex anisotropic structures, Mol.Cryst.Liq.Cryst. 559, pp.179-185 (2012)

    21. Al.A. Muravsky, An.A. Murauski, V.E. Agabekov, O.O. Chuvasheva and N.A. Ivanova, Achromatic circular polarizer in the 482–535 nm range based on polypropylene films, J. Appl. Spectr. 79, #5, pp. 820-825 (2012)

    22. A.A. Muravsky, V.E. Agabekov, A.L. Tolstik, U.V. Mahilny, Photoaligned liquid crystal lens with single low voltage electrode, J. Semicond. Phys., Quant. Electr. and Optoelectr. 13, pp. 154-157 (2010)

    1.      V. Bezruchenko, A. Muravsky, A. Murauski, A. Stankevich, U. Mahilny, Alignment Materials with controllable anchoring energy, J. Soc. Inf. Displ., 10.1002/jsid.675 (2018) 

    2.      I.I. Rushnova, E.A. Melnikova, A.L. Tolstik, A.A. Muravsky, Electrically Switchable Photonic Liquid Crystal Devices for Routing of a Polarized Light Wave, Optics Communications 413, pp.179-183 (2018)

    3.      M.P. Bey, A.P. Yuvchenko, A.A. Muravsky, A.A. Murauski, New amides and imidoamides of maleopimaric acid as chiral dopants for nematic liquid crystal compounds, Rus. J. Gen. Chem. 88/2, pp. 273-278 (2018)

    4.      Bezruchenko V.S., Mahilny U.V., Stankevich A.I., Muravsky A.A., Murauski A.A., Kukhta I.N., Centrosymmetric distributions intensity of light formation for exposure of photosensitive alignment layers of LC lenses, J. BSU. Physics 3, 12-19 (2017)

    5.      V.S. Bezruchenko, A.A. Muravsky, A.A. Murauski, A.I. Stankevich, U.V. Mahilny, Tunable Liquid Crystal Lens based on Pretilt Angle Gradient Alignment, Mol. Cryst. Liq. Cryst., 626, pp.222-228 (2016)

    6.      V.S. Bezruchenko, A.A. Muravsky, A.A. Murauski, A.I. Stankevich, U.V. Mahilny, Azimuthal Anchoring Energy increase of Gradient Copolymer by Additives of Planar Alignment Polymer, Liq. Cryst. & their Appl., Russian Journal, 16, pp. 38-41 (2016)

    7.      V.S. Mikulich, An.A. Murauski, Al.A. Muravsky and V.E. Agabekov, Influence of Methyl Substituents on Azo-Dye Photoalignment in Thin Films, J. Appl. Spectr. 83, pp.115-120 (2016)

    8.      V.S. Mikulich, An.A. Murauski, Al.A. Muravsky and V.E. Agabekov, Effect of Temperature on the Photoalignment of Azo Dyes in Thin Films, Rus. J. Phys. Chem. A 90, pp. 675–682 (2016).

    9.      E.A. Melnikova, A.L. Tolstik, I.I. Rushnova, O.S. Kabanova, A.A. Muravsky, Electrically controlled spatial-polarization switch based on patterned photoalignment of nematic liquid crystals, Appl.Opt. 55, pp. 6491-6495 (2016).

    10.  A. Stankevich, V. Bezruchenko, A. Muravsky, A. Murauski, V. Agabekov, Anisotropic Thin Films Formation Rate оn PEDOT:PSS Layer with High Azimuthal Anchoring, J. Soc. Inf. Displ. 24, pp. 628-632 (2016)

    11.  A.A. Komar, A.L. Tolstik, E.A. Melnikova, and A.A. Muravsky, Optical switch based on the electrically controlled liquid crystal interface, Appl. Opt. 54, pp. 5130-5135 (2015)

    12.  V.S. Mikulich, Al.A. Muravsky, An.A. Murauski, and V.E. Agabekov, Effect of cis/trans-Isomerisation on Photoalignment of Azo Dyes, Rus. J. Gen. Chem. 85, pp.407-412 (2015)

    13.  Gurumurthy Hegde, A.A. Muravsky, A.A. Murauski, I.N. Kukhta, A.V. Adhikari, L. Komitov, Photo tuning of thiophene-2, 5-dicarbo hydrazide derivatives for their photoalignment ability-Molecular modelling studies, RSC Adv. 5, 79800 (2015)

    14.  U.V. Mahilny, A.I. Stankevich, A.V. Trofimova, A.A. Muravsky, A.A. Murauski, Photosensitive Polymers for Liquid Crystal Alignment, Phys.Procedia 73, 121-125 (2015)

    15.  Belyaev, V. V., Chausov, D. N., Kurilov, A. D., Rybakov, D. O., Solomatin, A. S., Murauski, A.A., Muravsky A.A., Chigrinov V.G., Fan, F, Dielectric properties of liquid crystals for display and sensor applications, J. Soc. Inf. Displ. 23, pp. 403-409 (2015)

    1. V.S. Mikulich, A.A. Muravsky, A.A. Murauski, I.N. Kukhta, V.E. Agabekov, Photoalignment dynamics of azo dyes series with different coordination metals, J. Soc. Inf. Displ. (2014)
    2. В.С. Безрученко, Ан.А. Муравский, Ал.А. Муравский, Определение дисперсии показателей преломления двулучепреломляющих полипропиленовых пленок, Журн.Прикл.Спектр.81, с. 457-463 (2014)

    18.  V. Mikulich, A. Murauski,  A. Muravsky, V. Agabekov, V. Bezruchenko, Waterproof material for liquid crystals photoalignment based on azo dyes, J. Soc. Inf. Displ.22/4, pp. 199-203 (2014)

    1. Ан.А. Муравский, Ал.А. Муравский, В.Е. Агабеков, Установка для одновременного измерения азимутальной и полярной энергии сцепления жидкого кристалла в одной ячейке в автоматическом режиме, Вестник МГОУ Сер. «Физика- Математика» 1, с.51- 56 (2013)
    2. A. Murauski, A. Muravsky, V. Agabekov, Investigation of volume absorption anisotropy of complex anisotropic structures, Mol.Cryst.Liq.Cryst. 559, pp.179-185 (2012)
    3. Al.A. Muravsky, An.A. Murauski, V.E. Agabekov, O.O. Chuvasheva and N.A. Ivanova, Achromatic circular polarizer in the 482–535 nm range based on polypropylene films, J. Appl. Spectr. 79, #5, pp. 820-825 (2012)
    4. A.A. Muravsky, V.E. Agabekov, A.L. Tolstik, U.V. Mahilny, Photoaligned liquid crystal lens with single low voltage electrode, J. Semicond. Phys., Quant. Electr. and Optoelectr. 13, pp. 154-157 (2010)
    Заведующий лабораторией,